R
\\ \\
A

L9

A

Py

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
JA \
I \

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

Order and Disorder in Metallic Alloys [and
Discussion]
B. L. Gyorffy, G. M. Stocks, B. Ginatempo, D. D. Johnson, D. M. Nicholson, F. J.

Pinski, J. B. Staunton, H. Winter, H. Rafii-Tabar, J. B. Pendry, N. W. Ashcroft, V.
Kumar and L. M. Falicov

Phil. Trans. R. Soc. Lond. A 1991 334, 515-526
doi: 10.1098/rsta.1991.0031

i i i Receive free email alerts when new articles cite this article - sign up in
Email alerti ng service the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to:
http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1991 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;334/1635/515&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/334/1635/515.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Order and disorder in metallic alloys

By B. L. Gyorrry!, G. M. Stocks?, B. GinaTEMPO?, D. D. JoENSON?,
D.M. Nicuorson? F.J. Pinski®, J. B. STaunToN® aAxD H. WINTER?

YH. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue,
Bristol BS8 1TL, UK.
2 Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008,
Oak Ridge, Tennessee 37831-6114, U.S.A.
3 Instituto di Fisica Teorica, Universitd di Messina, Messina, I taly
4 Sandia National Laboratories, P.O. Box 969, Livermore,
California 94551-0969, U.S.A.

> Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, U.S.A.

8 Department of Physics, University of Warwick, Coventry OV4 7AL, UK.

" Kernforschungszentrum Karlsruhl, D-7500 Karlsruhl, F.R.G.

A Y
\\ \\\
=

/
/A

Y

A

THE ROYAL A
SOCIETY

Self-consistent ‘band theory’, based on density functional theory, is a useful
approach to describing the electron glue which holds solids together. However, its
powerful group theoretic and numerical techniques cannot be deployed for disordered
states of matter. The self-consistent KKR-cPA is an analogous method which is able
to deal with some of these interesting cases. In particular, we show how it describes
random metallic alloys, treating all the classic Hume-Rothery factors: size-effect,
electronegativity and electrons per atom ratio (e:a) on more or less equal footing and
from first principles. Moreover, we use the KKR-cPA framework to analyse the
instability of the disorder state to compositional ordering processes and hence
provide a first principle description of the forces which drive order—disorder
transformations.
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1. Introduction

The electronic structure of random crystalline metallic alloys is an important chapter
in the quantum theory of solids (Hume-Rothery & Coles 1969; Mott & Jones 1936).
After atoms, molecules and ordered crystalline solids this is the next most tractable
problem of positively charged nuclei and the ‘electron glue’ between them.
Moreover, it is the simplest non-trivial example where the theme of order—disorder
is fully developed. In short the electronic states have new features and they drive
novel phenomena such as phase separation and compositional ordering. We review
the current state of our first principles’ understanding of the electronic structure and
the way it determines the compositional short- and long-range order (de Fountain
1979; Kchaheturyan 1986).

Central to our discussion below are two assumptions: one is that of a rigid lattice
and the other is that specifying the occupancy variable £, (which takes on the value
1 if there is an A atom at the ith site and O if the atom at R, is the B type) for all
sites defines all compositional configurations. The first of these may be relaxed in
favour of a symmetry statement, that on average the system is invariant under a set
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516 B. L. Gyorffy and others

of translations which define a lattice, without seriously affecting the conceptual
framework we are about to describe. The second, which is essentially the adiabatic
theorem, can be relinquished only at the expense of an entirely new start involving
diffusion. In short we consider configurations specified by the sets {£;} and average
over all such sets with appropriate weights.

Traditionally, the study of electronic states in random alloys always followed that
for pure metals and order intermetallic compounds with a lag, reflecting the technical
difficulties of solving the Schridinger equation without the full support of the Bloch
theorem (Elliott et al. 1974; Ehrenreich & Schwartz 1976). One of the points we
emphasize here is that recently the work on random alloys has caught up with that
for ordered systems in the sense that we can now base our description of the
electronic structure of each configuration {{;} on the local density approximation
(LDA) to the density functional theory (prr). Namely, for each configuration {£;}, we
consider the Kohn-Sham equation for the Greens function:

(e+V2—2v,';DA <r—Ri;{g@-}>) G (r,rie) = dr—r), (1)
[3

where each potential well, centred at the atomic nuclei, is described by the Lpa
potential functional (Kohn & Vashista 1983), v{1,, (r— R;;[n(r;{£,}]) and the charge
density, n(r;{£;}), is given by

n(riE)) = — L3 f def(e) Im G, (r. rsc). @)

T
Above, as usual, f(¢) stands for the Fermi function, f(¢) = (exp {f(e—pu)}+1)7" at the
inverse temperature f = (kz7)"! and electronic chemical potential x, and o is the
spin label.
Thus, the starting point for our arguments is the following ‘Gedanken’ procedure:
solve (1) and (2) self-consistently for a fixed configuration {£;}, then, evaluate the ¥
formula for the grand potential:

Q,(16:3) = Q[n(r; &) (3)
and calculate the partition function for the combined electron nuclei system:
7 = % exp {—p(Q,({&}) —Zv; )}, (4)
&} i

where v, is the local chemical potential difference v; = v* —P for the two species of
nuclei. As usual, v, is allowed to vary from site to site for formal purposes only.
Finally, the ensemble of configurations, {£;}, is defined by the distribution function

P{&}) = Z7" exp {—/)’(Qe-%? vi &)} (5)

2. A first principles mean-field theory of compositional order

Although the above programme is not tractable as it stands, its mean field
theoretic version is. We demonstrate, by using non-trivial examples, that this is a
dramatic step forward in understanding the basic physics of metallic alloys.

The mean field approximation to the theory specified by equations (1)-(4) has
three parts (Kohn & Vashista 1983; Gyorffy & Stocks 1983; Gyorffy et al. 1989).

Phil. Trans. R. Soc. Lond. A (1991)
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Order and disorder in metallic alloys 517

The first is the usual assumption of a form for the free energy (grand potential) Q,
as a function of the local concentration configurations:

Q(T,v;{c;}) = 2,({c}) + kg TZ(c Inc,+(1—¢;) In (1—¢))—2v;c, (6)
where ¢; is the thermal average of §;, consistent with the form of (6) (e.g. ¢, =

—002/v,), and
Q,({ei}) = <RAEN o (7)

To be consistent with the simple form of the entropy contribution in (6) the average
{ Dy is to be taken with respect to the inhomogeneous product distribution

P((£}) = ITP(E) (8)

for which each factor is parametrized by the local concentration ¢, as follows:
Bi(&) = ¢; &+ (1—c) (1=§&). 9)

Finally, the state of compositional order is determined by finding the minimum of
the grand potential, in (6), as a function of the local concentrations. Namely, at a
given temperature T and chemical potential difference v(= v,;V4) the equilibrium
concentration configuration {c;} is the solution of the Euler-Langrange equation:

(09/0¢;), = 0. (10)

The second and third part of the statement, which constitutes the mean field
theory, has to do with the calculation of the average electronic grand potential
specified by equations (7)—(9).

In the spirit of the LpA and the mean field theory the second part simplifies the
local potential function in (1) by replacing it by its local, partial average,

o(r—R;; &) = §;vA(r—Ry; [0(r), m(n)]) + (1 = £) 0®(r— Ry; [7°(r), A(r)]), (1)

where ©A(r) and #B(r) are the partly averaged charge densities, 7(r) is the fully
averaged charge density:

ar) = e (r)+ (1 —c) 7B(r) (12)

and the potential functionals v*(r — R, ; [#*(r), 7(r)]) are the usual LpA functional using
7%(r) for the contributions from the ith unit cell and 7(r) for the contributions from
all the other unit cells. Evidently, a is A or B. Note that for the sake of clarity we
have assumed that we are working in the disordered state where all A sites are
equivalent and hence all A sites are characterized by the same partly averaged
charge density #@%r), and potential function #*(r—R,;@*(r),7(r)). Clearly, the
equivalent statement applies for the B sites.

The final, and third, part splits into two logically separate instructions: the first
is to solve

(e+v2+zv<r—R,-;£i>) Gr,ri6) = dr—7) (13)
for the averaged and partly averaged Greens functions and charge densities
w(r) = —1 [defie) m G riepsy (14)

Phil. Trans. R. Soc. Lond. A (1991) I_ 125 ]
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518 B. L. Gyorffy and others

calculate the new potentials using (11), and repeat the procedure until convergence.
The second is to use the coherent potential approximation (cpa) (Elliott et al. 1974 ;
Ehrenreich & Schwartz 1976) for calculating the averages and hence take for £,({c})
in (7) QE%4({c,}) (Gyorffy et al. 1989).

Note that the first of these instructions interchanges the order of the self-
consistency procedure demanded by pFT and the statistical averaging over the
ensemble of configurations. Evidently, this is one of the features of the scheme which
renders it tractable. The second instruction is also worthy of comment. Clearly the
cPA is the natural approximation to use because, as it is made explicit by (8), the
occupation variables are statistically independent and under such circumstances the
CcPA is known to be the mean field theory of disorder (Schwartz & Sigga 1972).
Moreover, the self-consistent cpa algorithm which is implied by the above procedures
have been fully implemented for realistic, muffin-tin, crystal potentials by the scr-
KKR-cPA method (Stocks & Winter 1984). This is the principle computational
advance which makes the proposed calculations a practical proposition.

To highlight the physical content of the above first-principles mean field theory,
we note that the solution of (10) in the disordered state is ¢; = ¢Ve. If the solution
takes on any other pattern we speak of long-range order. Regions of the v, T plane,
where solutions of different symmetry are of the lowest free energy, are separated by
lines of phase boundaries and the totality of these constitutes the alloy phase
diagram. Short-range order, on the other hand, is described by various derivatives
of Q with respect to the chemical potential. For example the Warner-Cowley short-
range order parameter «;; is given by the relation

0= e CEE—E Ey = —2(2) (15)

e (1—cy) (1—c;) \Ov; Qv;
A particularly useful quantity is the direct correlation function
S = (0825 e /0 0¢y) ey, (16)

For instance, in the disordered state the lattice Fourier transform of o;;, a(k), which
is measured in diffuse scattering experiments, is given by

a(k) = ky T/ (kyT—c(1—c) SP(k)), (17)

where S® is the lattice Fourier transform of S{¥ defined in (16).

3. The self-consistent field Korringa—Kohn and Rostaker coherent
potential approximation [SCF-KKR-CPA]

Thus, for very general reasons, detailed in the previous section, we need to solve
(13) for the partly averaged charge densities defined in (14). Note that this is a
particularly simple example of electrons in disordered potential. It is often referred
to as the case of cellular disorder and the cpa is a well-established method for dealing
with it (Elliott et al. 1974; Ehrenreich & Schwartz 1976). This fact lands a solid
foundation to the theory of random substitutional alloys which other random
systems such as liquids and glasses do not possess.

Until recently (Kudrnovsky et al. 1989), of all the band theory methods like
FLAPW, LMTP, KKR only the latter has been adopted for applications to disordered
systems. In fact the multiple scattering version of the KKr proved eminently suitable

Phil. Trans. R. Soc. Lond. A (1991)
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Order and disorder in metallic alloys 519

for implementing the basic ideas of the cpa for random substitutional alloys (Gyorffy
& Stocks 1979).

In fact the conceptual framework is very simple: sites described by the potential
well corresponding to v*(r—R) scatter electrons according to the partial wave
scattering amplitudes

fie) = (1/20) (exp [1263(e)] — 1), (18)

where 8%(¢) is the usual scattering phase shift which describes the effect of a potential
at the origin on the outgoing spherical waves, and we are looking for the electronic
structure determined by the fundamental equation of multiple scattering. In a form
most suitable for our present purposes it is given by

Z (—elfil Oy 1 O R Rz e)) Ty = 010y (19)
<l

where L stands for both the polar and azimuthal quantum numbers ! and m
respectively, G (R;—R;;e) is the real space KKR structure constant which
describes the propagation of free spherical waves of angular momentum L from site
to site and 77,.(¢) is the scattering path operator (Gyorffy & Stocks 1979) which
relates an incident wave of angular momentum L to the site j to an outgoing wave
of angular momentum L’ from the site ¢. Evidently for the random potential problem
at hand f;} = £ fa,+ £)fBl1-

An important fedture of (19) is the separation of the scattering power at the
scattering centres described by the scattering amplitudes f; ;(¢), and the geometrical
arrangements of such centres which determine the otherwise potential-independent
structure constants G, (R,—R;;¢€). Note that the former appears only on the site
diagonal part of (19). In the language of tight-binding model hamiltonians, this
means the problem at hand corresponds to site diagonal randomness only.
Interestingly, this is the case in spite of the fact that the scattering amplitudes f, ,
and f, can correspond to bands of widely different widths. In other words,
remarkably, the KKRr-cPA treats on equal footing random alloys of metals with very
different band position, band width and hybridization without introducing explicit
off-diagonal randomness (Gyorffy & Stocks 1979).

The actual KKR-CPA procedure, based on (19), is very straightforward ; we seek an
effective (coherent) scattering amplitude which describe the average Greens function.
It is the solution of the cpa condition which, for the Kkr model, works out to be

e; 7o (e) + (1—c) 1L (€) = 1117 (e), (20)

where 7%/4(¢) is the site diagonal solution of (19) with an o impurity of R; in the
coherent potential lattice and 7% ¥ is the solution when all the sites are described by
the effective scattering amplitudes f; ¢ ( L €).

Once (20) has been solved for f; ¢..(€) and 77//(¢) the partly averaged charge
densities are to be calculated using the formula (Gyorffy & Stocks 1979):

7 (r) = —%Zfdef(e) 7% (rie) Z2.(r;€) Im 7% (€), (21)
L

where Z3(r; €) is the regular, radial solution for an a-type muffin-tin potential well. In
principle the above procedure can be iterated to self-consistency. It should be
stressed that while the fundamental equation of inhomogeneous KKR-CPA given in
(20) is the formal bases for calculating the generalized grand potential Q%4 ({c;}) it
Phil. Trans. R. Soc. Lond. A (1991)
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can be solved only in the homogeneous limit where ¢, = ¢Vi. Nevertheless, (20) can
be used to derive computationally tractable expressions (Gyorffy & Stocks 1983) for
the direct correlation function given in (16).

Before drawing this brief summary of our theory to a close, we comment on the
nature of the electronic structure as described by the KKR-CPA.

In general, for a disordered system the wave vector k is not a good quantum
number. Moreover, in the generic case, like a liquid or a glass, on the average the
system is translationally invariant and hence the relevant wave vectors comprise all
of k-space. Namely the Brillouin zone is of infinite extent. Under these circumstances
one is tempted to abandon the use of k-space altogether in favour of real space
methods like cluster or supercell calculations (Zunger ef al. 1990). However, the
cellular disorder of crystalline random alloys is an intermediate case between ordered
crystals and the topologically disordered systems mentioned above. Here, the
ensemble of configurations is invariant under the discrete set of translations which
defines the underlying lattice and this introduces a periodicity in k-space. That is to
say, there are Brillouin zones of finite extent and the phase space to be considered
is reduced to one of these. Of course, k is still not a good quantum number since the
translational symmetry applies only on the average. Nevertheless, it turns out to be
a surprisingly useful parameter. To make the best use of it one defines the Bloch
spectral function

Aglk;e) = —%Z ei"(Rf‘Ri)f dr® Im {G(r+R;,r+R;;€)), (22)
i 2

where the integral is over the ith unit cell whose volume is £,. Within the KKR-cPA
it is quite straightforward to evaluate the Bloch spectral function, which is
automatically periodic in k space, and it gives the most complete account of the
electronic states of a random alloy.

For an ordered system Ag(k;e) is given by a set of delta function peaks at ¢ = ¢,
v, the Bloch energy eigenvalues for the band index v. Naturally, for disordered
systems these peaks broaden out and their width can be interpreted as the inverse
lifetime of the state specified by k and v. As an example we show, in figure 1, the
Bloch spectral function at the Fermi energy ep in the IXWKWXI plane of the
Brillouin zone for the very interesting Cu,,Pd,, alloy system. Clearly, there is a Fermi
surface well defined on the scale of its linear dimensions. Furthermore, it has
interesting features, like the pronounced flat sheet perpendicular to the 'K direction,
and these can be measured in 2% angular correlation of (position) annihilation
radiation (ACAR) experiments (Berko 1979).

4. The configurationally averaged total energy

The above is one of the first useful results that comes out of a scF-KKR-cPA
calculation. The formula for it is a non-trivial, combined consequence of DET in the
LpA and the stationarity property of the cpa. Nevertheless, it takes the following
simple form (Johnson et al. 1990):

E = cE (7, 7))+ (1 —c) E,[7°, 7], (23)

where K, is the total energy functional derived by Janak (1974) for ordered systems
with the crystal potential in the muffin-tin form, ##(r) and #®(r) are the partly
averaged local charge densities defined in (14), #(r) is the fully averaged charge

Phil. Trams. R. Soc. Lond. A (1991)
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w
L Cuy; Pdy g 04 3
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0 02 04 0.6

)X concentration of palladium
Figure 1. (a) The Bloch spectral function A(k;e¢;) at the Fermi energy ¢, in the TXWKWXT plane
of the Brillouin zone for the Cu,,,Pd,,; alloy. (b) Evolution of the calculated Fermi surface with
congcentration c¢. (¢) Variation of the incommensurability m = 2(/2— 2k,(011)) with concentration.

Figure 2 ' Figure 3
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Figure 2. The variation of the configurationally averaged total energy (in rydbergs) with lattice
constants (in atomic units) for the roc CuyzZn,, alloy. A cubic least-squares fit gives a minimum
energy of —3414.45 Ry at 6.93 a.u. and a bulk moduli of 1.41 mbar (1.41 x 10*! Pa).

Figure 3. The variation of the alloy pressure (in rydbergs) with lattice constant for roc CugzZn, .
The zero pressure point is at a, = 6.93 a.u. and the bulk moduli is 1.41 mbar (1.41 x 10'* Pa).

density and 7%, is the same but in the interstitial region. A similar formula applies for
the pressure (Johnson et al. 1990). A remarkable feature of (23) is that, due to the use
of the cpa, £ has similar variational characteristics as the total energy in the ordered

state. Namely, SE/5mA(r) = 0; 8E/815(r) = 0. (24)

This property is, certainly, one of the principal reasons for the success of the SCF-KKR-
cpA in predicting the total energy as a function of concentration.

In figure 2 we present our calculated £ as a function of the lattice constant for the
roe Cug 5020, 5, random alloy. The minimum at az = 6.96 a.u.T is within 5% of the
experimentally determined equilibrium value. Moreover, the calculated pressure
against ‘e’ curve, shown in figure 3, crosses zero at ap = 6.93 a.u., which is in very
satisfactory agreement with a, determined from the total energy calculation. Thus
the consistency and accuracy of these calculations are comparable with those
achieved in similar calculations in ordered systems (Maruzzi et al. 1978).

Repeating the above calculations for various concentrations yields the lattice
parameter against concentration curve shown in figure 4. A particularly pleasing

t lau ~53x10" m.

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 4 Figure 5
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6l ——"""03 08 B 08

zinc concentration zinc concentration

Figure 4. The variations of the lattice constant @ with concentration as calculated by the scF-KKR-
ora. For comparison we also show the prediction of Vegard’s rule.

Figure 5. The calculated heats of mixing at various concentrations for the rrc Cu,Zn,_, alloys.

feature of the generally good agreement between the theory and experiment is the
fact that (0a/0c),_, = 0.0036 per at. % Zn which deviates from the prediction of the
Vegard’s rule of 0.0052 per at. % Zn but agrees with the experimental result of 0.0036
per at. % Zn. While it should be stressed that the experimental determination was
at 7' = 300 K the thermal expansion coefficient for this alloy is small and hence the
agreement is real at the 0.5% level.

Another quantity of interest is the heat of mixing given by

AE™X = | —cEA —(1—c) B, (25)

where E* and E® are the ground state energies of the pure A and pure B metals,
respectively, on the alloy lattice. Our calculated values of AE™X at various
concentrations are shown in figure 5. The negative sign of AE™> implies a tendency
to order which is consistent with the rather complicated phase diagram which
features various order phases (Hansen 1958). Indeed the fact that AE™X is not a
parabolic function of ¢ suggests such a phase diagram.

More details concerning these calculations are found in the recent paper of Johnson
et al. (1990).

5. Order—disorder transformations

One of the most intriguing complex of ordering phenomena takes place in the Cu
rich Cu,_,Pd, alloys (Oshima & Watanabe 1976; Ceder et al. 1989). For instance,
in the high-temperature disordered phase diffuse scattering experiments find in
a(q) [110] superlattice peaks, split into four peaks. This implies a tendency to
form concentration waves incommensurate with the underlying lattice (Sato & Toth
1965). Moreover, these peaks move apart as ¢ changes from 0.12 to 0.4, where they
disappear (Oshima & Watanabe 1976). The first success of the first-principle mean
field theory described in §2 was to give a microscopic explanation of these
observations (Gyorfty & Stocks 1983; Gyorffy et al. 1989). In fact, the calculations
identified the parallel flat sheets of the Fermi surface, whose presence can be deduced
from the Bloch spectral function displayed in figure 1, as the electronic driving
mechanism behind the ordering process. Examples of the calculated four peaked a(k)
are shown in figure 6.

Phil. Trans. R. Soc. Lond. A (1991)
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I o Figure 6. The concentration—concentration correlation function a(k) (the Warren-Cowley short-
~ o range order parameter) as calculated in the first-principles mean field theory based on the SCF-KKR-
cpa in the plane containing the reciprocal lattice points 000, 020, 022, 002 for various Cu,_Pd,
- alloys.
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Figure 7. The calculated effective pair interaction parameter v(k) along the XW segment (k, 10) in
the first Brillouin zone for 7%, 25% and 40% Pd in Cu,Pd,_, alloys.

Figure 8. The calculated Warren—Cowley short-range order parameter a(k) in the k, = 0 plane for
T = 1.1 T), where 7T} is the theoretical ordering temperature. The peaks at the X-points indicate that
the alloy will order into a @ = (1,0, 0) concentration wave (L1,) state for T<1T,

As is well known, with certain caviats notwithstanding, the direct correlation
function S (k), from which a(k) is calculated according to (7), can be regarded as the
lattice Fourier transform of an effective pairwise, interchange, potential #(k) [=
vA4 (k) +vBB(k) — 2028 (k)]. To display the subtle ways the ordering tendency changes
in these alloys we plot S®(k;c) = d(k;c) for various concentrations in figure 7.
Recently, using these curves, in figure 7 and the mean field theory Cedar et al. (1991)
have constructed the full, very complex, low-temperature phase diagram featuring
lock in transitions into high-order commensurate phases, in good qualitative
agreement with experiments.
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Another recent application of the method is to the Pt,—Ni,_, alloy system. These
alloys represent a serious problem for theories based on simple tight-binding models
of the electronic structure because they predict a trend according to which alloys
with nearly half-filled d-band order and those for which ¢ falls near the bottom or
the top of the effective d-band phase separate (Heine & Samson 1983; Teleglia &
Ducastelle 1987). Experimentally Pt,—Ni,_, is found to order, contradicting the
above trend governed by the band filling or electron per atom ratio e/a.

Surprisingly, the first principles mean field theory based on the scF-KKR-cPa
predicts ordering in agreement with experiments. We show 8® (k) in the k, = 0 plane
in figure 8. The sharp rise of S®(k), from the I" point to the zone boundary, can be
interpreted as a robust tendency to order in agreement with the experiments of
Dahmani et al. (1985). The reason for this dramatic difference between the tight-
binding model calculations and the scF-kKR-cPA-based theory is very interesting.
Analysis of our results suggest that ordering in this system is due to the size effect
which overpowers the competing e/a effect. In other words our first principles
calculation correctly reproduces the metallurgical rule of thumb according to which
alloys of large and small atoms order (on an Fcc lattice into an L1, structure).

In the language of tight-binding model hamiltonians big and small atoms, on the
same lattice, give rise to large and small overlap integrals and hence bandwidths.
This in turn causes off-diagonal randomness which, in general, is difficult to treat.
The key to the success of the first principles calculation is the sScP-KKR-cPA method
which treats site-diagonal, site-off-diagonal and hybridization randomness on equal
footing.

In summary we stress that our first principles mean field theory, while subject to
limitations due to the neglect of certain correlations, treat all the classic Hume-
Rothery factors which determine the state of compositional order, namely electron
per atom ratio, size effect and electronegativity, on equal footing and without
adjustable parameters. The most reassuring aspect of the above Pt,~Ni,_, example
is that it appears to be an adequate theory of the relative significance of these factors
even when they drive the ordering and clustering tendency in the opposite direction.
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Discussion

H. Rarm-TaBar (Department of Materials, Oxford University, U.K.). Is there a simple
relationship between the A-B interaction on the one hand and the A-A and B-B
interactions on the other hand in Professor Gyorffy’s calculations ?

B. L. GyorFry. This is a first principles electronic theory in which there are no pair
potentials as such. The direct correlation function S®(k) may, however, be
interpreted (in the mean spherical approximation) as the interchange energy v(k) =
vA4 (k) +vBB(k)— 204B(k), which occurs in pair potential models. But even then one
can not identify anything in our theory which could be called as v*4(k) or vBB(k) or
v2B(k) on their own.

J. B. PENDRY (Imperial College, London, U.K.). Although cPA is a mean field theory
can it be applied to photoemission and transport properties which involve higher-
order correlation functions?

B. L. Gyorrry. Yes. The cpa provides a prescription for higher-order averages such
as {(GG) and (GGG) without replacing them by products of (). In other words
there are cpA vertex corrections. In fact first principles (KkKR-cpA) calculations have
been done for transport problems photoemission problem and positron annihilation
problem, all of which involve such higher-order averages.

N. W. Asucrort (Cornell University, U.S.A.). Evidently, size differences in atoms are
being accommodated only insofar as they are manifested in the electronic (band)

Phil. Trans. R. Soc. Lond. A (1991)
[ 133 ]


http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AN
\
) \

/

A
(

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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part of the problem. Yet as one knows from the liquid equivalent of this problem, size
differences give rise to a significant entropic component to the overall free energy (i.e.
going beyond the (In €' type of term that is being used). This size difference is also
important in the known failures of Vegard’s Law (most binary systems deviate from
this rule). Given this, is it possible to improve on the entropic contributions, as they
enter the theory ?

B. L. Gyorrry. What I presented is an all electron theory and hence, as a matter of
principle, no explicit consideration of atomic size enters the problem. The effect
whose liquid state analogue Professor Ashcroft referred to would come into the
present discussion if and when the size of the unit cell is allowed to fluctuate as the
occupance changes I called these strain fluctuations (they are driven by the Kanzaki
forces) and said that for the time being they are not taken into account. Clearly, their
contribution to the free energy would have an entropic contribution. However, in the
case of the Pt ,Ni,_, they would surely favour ordering and therefore would reinforce
the ordering tendency we found.

V. Kvmar (Materials Science Division, Indira Gandhi Centre for Atomic Research,
Kalpakkam, India). In the tight-binding model of disordered alloys, effects of local
environments could be included reasonably well by treating a configurational
average over a cluster of atoms and the single site coherent potential. Has such an
attempt been made for Kkr-cpa and if so how well does it work ?

B. L. Gyorrry. Formally the Kkr-cPA is the same as its tight-binding version and
new developments can be readily recast into the language of kkr-cpa. The difficulty
is the computational implementation. There are a few cluster KKR-cpaA studies in the
literature (Gonis et al. 1983) but not many.

L. M. Favrcov (Unwersity of California, Berkeley, U.S.A.). The cpa is now 24 years
old. It was received originally as the alloy theory that could solve all problems in the
field. However, no step beyond the single-site (concentration) averaging has been
successfully completed yet. Was the optimism misplaced ? Is there a chance that the
impasse will be overcome ?

B. L. Gyorrry. That cra 24 years ago was for a simple tight-binding model with the
uncontrolled parameters and no reference to the thermodynamic state of the nuclei.
The theory I presented is a full theory, albeit mean field and single site, of the nuclei
and electron system without adjustable parameters. Note that we have successfully
calculated the pair correlation functions, (&£ —<{§;> (§;» for a variety of real
systems. Such considerations were not even dreamed of in connection with the cpa
in those days. As to the technical questions of whether there is a natural, universally
expected approximation which goes beyond the single site ¢cpa the short answer is
that there is not. Nevertheless, there are useful recipes like cluster cpa’s and direct
space methods based on the inverse Monte-Carlo algorithms of significant structure
but most of these are as universally accepted as the good old cpa.
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nge order parameter) as calculated in the first-principles mean field theory based on the SCF-KKR-
A in the plane containing the reciprocal lattice points 000, 020, 022, 002 for various Cu,__Pd,
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